6th International Conference Energy & Meteorology: Abstract Submission

Validation of GFS day-ahead solar irradiance forecasts in China (634)

Yue Zhang 1 2 , Yanbo Shen 3 , Xiangao Xia 2 4 , Guangyu Shi 1 2
  1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  2. University of Chinese Academy of Sciences, Beijing, China
  3. Public Meteorological Service Center, China Meteorological Administration, Beijing, China
  4. LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Objective & Background

This paper provides a benchmark to evaluate operational day-ahead solar irradiance forecasts of Global Forecast System (GFS) for solar energy applications in China. First, GFS day-ahead solar irradiance forecasts are validated quantitatively with hourly observations at 17 first-class national solar monitoring stations operated by China Meteorological Administration (CMA) and 1 Baseline Surface Radiation Network (BSRN) station. Second, a hybrid forecast method based on Artificial Neural Network (ANN) and GFS product is proposed to improve forecasts accuracy, and it is validated against ground truth at Xianghe and Geermu. The results demonstrate parameter optimization of direct-diffuse separation fails to reduce the errors of direct normal irradiance (DNI) forecasts, and the hybrid method has the best performance for DNI forecasts.

Principal results

Tab. 1: Performance statistics of GFS day-ahead solar irradiance forecasts at 18 stations (unit: percent)

ID

GHI rMAE

GHI rRMSE

GHI rMBE

DNI rMAE

DNI rRMSE

DNI rMBE

DHI rMAE

DHI rRMSE

DHI rMBE

Mohe

47.06

94.45

27.4

257.49

710.6

205.78

56.42

74.94

-21.16

Harbin

43.29

90.06

24.53

186.88

656.5

122.55

45.8

58.7

-3.84

Urumqi

53.3

66.43

29.7

101.76

146.4

71.19

41.86

55.28

-19.99

Kashi

63.31

79.81

23.55

150.46

209.17

76.66

49.97

59.14

-14.54

Ejinaqi

143.72

577.3

124.1

314.3

1358.6

285.07

62.15

77.02

-29.21

Geermu

55.25

183.81

29.29

543.85

1141.35

423.95

206.12

257.3

-149.61

Yuzhong

67.36

103.16

43.01

210.57

419.9

181.58

53.54

65.22

-27.36

Shenyang

42.42

59.82

17.53

142.76

241.94

52.43

61.1

79.54

-1.34

Beijing

41.91

75.55

14.51

149.81

484.88

72.96

50.35

65.64

-15.72

Lhasa

66.12

95.98

40.92

165.98

279.67

128.37

58.18

67.78

-36.76

Chengdu

300.02

1786.89

282.23

1630.53

11590.15

1611.59

72.87

90.41

19.66

Kunming

57.46

72.59

19.9

124.82

193.57

79.38

52.83

65.11

-18.03

Zhengzhou

49.47

63.42

27.52

200.62

300.57

151.38

44.5

57.09

-29.81

Wuhan

57.29

73.02

28.46

256.05

402.22

194.52

49.75

62.58

-22.17

Baoshan

55.33

109.96

35.16

278.34

898.74

217.92

49.24

64.44

-13.33

Guangzhou

61.94

79.27

30.16

222.49

343.88

152.63

45.09

57.6

-16.56

Sanya

53.76

67.65

19.54

158.62

220.96

83.88

44.96

56.16

-18.31

Xianghe

59.75

202.47

33.63

2630.21

70224.38

2386.57

105.62

143.48

-65.1

 

Tab. 2: Performance statistics at Xianghe (unit: percent)

Method

GHI rMAE

GHI rRMSE

GHI rMBE

DNI rMAE

DNI rRMSE

DNI rMBE

DHI rMAE

DHI rRMSE

DHI rMBE

BRL

59.75

202.47

33.63

2630.21

70224.38

2386.57

105.62

143.48

-65.1

Tuned BRL

59.75

202.47

33.63

2584.57

70203.9

2336.69

99.86

134.63

-36.4

ANN

30.87

40.64

-15.85

76.7

97.88

-30.54

37.47

51.23

6.89

 

Tab. 3: Performance statistics at Geermu (unit: percent)

Method

GHI rMAE

GHI rRMSE

GHI rMBE

DNI rMAE

DNI rRMSE

DNI rMBE

DHI rMAE

DHI rRMSE

DHI rMBE

BRL

55.25

183.81

29.29

543.85

1141.35

423.95

206.12

257.3

-149.61

Tuned BRL

55.25

183.81

29.29

534.18

1134.28

390.86

208.07

261.76

-119.08

ANN

82.92

99.85

-82.38

97.85

141.98

-96.04

70.11

91.56

-67.05